Topological Ramsey theory of countable ordinals Jacob Hilton, University of Leeds Joint work with Andrés Caicedo, Mathematical Reviews

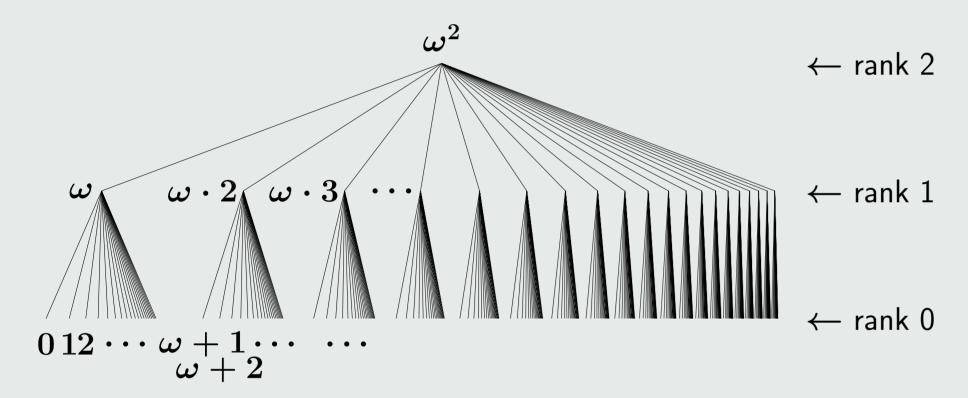
Ordinal topologies

The order topology on a totally ordered set X is generated by intervals (x,y) with $x \in X \cup \{-\infty\}$ and $y \in X \cup \{\infty\}$. This generalises the Euclidean topology on \mathbb{R} .

When ordinals are endowed with the order topology, points corresponding to non-zero limit ordinals become topological limits of the points below them. For example, $\omega + 1 \cong \{1 - \frac{1}{n} : n \in \mathbb{N}\} \cup \{1\}.$

The Cantor-Bendixson *derivative* X' of a topological space X is the set of limit points of X. The rank of $x \in X$ is the number of iterated derivatives that can be applied before x is removed. In general, this rank may be ordinal-valued or may not exist.

We visualise ordinal topologies by positioning a point vertically according to its rank. For example, here is $\omega^2 + 1$:



Topological partition relations

 $K_X :=$ complete graph with vertex set X.

The usual Erdős–Rado partition relation $\kappa
ightarrow (\lambda)_2^2$ between cardinals κ and λ means that, for every red-blue edge-colouring of K_{κ} , there is a set of vertices of cardinality λ , between which every edge has the same colour. For example, $\aleph_0 \to (\aleph_0)_2^2$ is Ramsey's theorem.

In a topological partition relation, we replace cardinals with topological spaces.

Definition. Let Y, X_{red} and X_{blue} be topological spaces. We write $Y
ightarrow_{top} (X_{
m red}, X_{
m blue})^2$ to mean that, for every red-blue edge-colouring of K_Y , there is either a complete red subgraph on a subspace homeomorphic to $X_{
m red}$, or a complete blue subgraph on a subspace homeomorphic to X_{blue} .

For example, if $m{Y}$, $m{X}_{\mathsf{red}}$ and $m{X}_{\mathsf{blue}}$ are discrete spaces, then we recover the usual partition relation. See [5] for further details.

Example

subgraphs:

Next, given any infinite set of edges, infinitely many of them have the same colour. By passing again to a subset if necessary, we may assume that these edges are blue, otherwise we obtain a complete red subgraph on a subspace homeomorphic to $\omega + 1$:

To avoid a blue triangle, we may now assume that these edges are red:

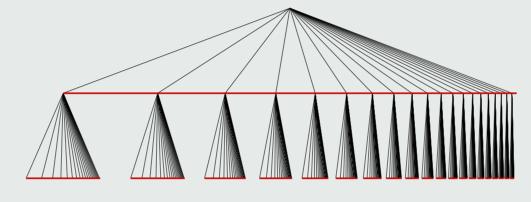
Finally, consider only those vertices incident to the red edges we have just identified. By Ramsey's theorem, we may once again assume that there is an infinite complete red subgraph:

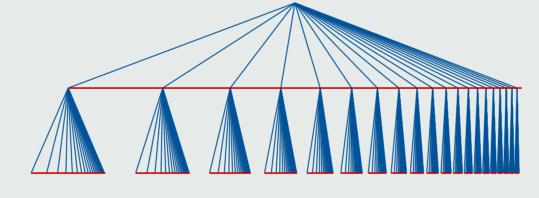
This gives us a complete red subgraph on a vertex set homeomorphic to $\omega + 1$, as required.

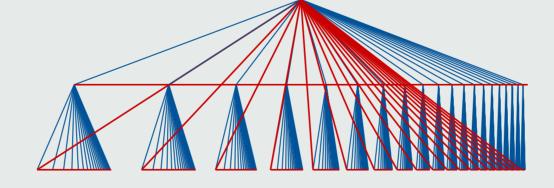
Theorem. $\omega^2 + 1 \rightarrow_{top} (\omega + 1, 3)^2$.

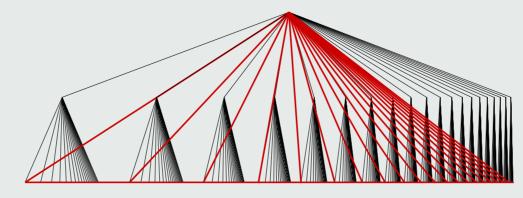
Proof. Suppose we are given a red-blue edge-colouring of K_{ω^2+1} . We must find either a complete red subgraph on a subspace homeomorphic to $\omega+1$, or a blue triangle. Note that a subspace homeomorpic to $\omega+1$ is simply any subset of order type ω together with its supremum.

Given any infinite subset of ω^2+1 , by Ramsey's theorem there is either a blue triangle, or an infinite complete red subgraph. By passing to a subset if necessary, we may therefore assume that these are complete red









Topological Ramsey numbers

 $\gamma \rightarrow_{top} (\alpha, \beta)^2$.

 $R^{top}(\omega+1,3)=\omega^2+1.$

k be a positive integer.

- $\blacksquare R^{top}(\omega^2+1,k+2) \leq \omega^{\omega \cdot k}+1.$

- $R^{top}(\omega + 1, k + 1) = \omega^k + 1.$ • $R^{top}(\alpha,k) < \omega^{\omega}$ if $\alpha < \omega^2$. • $R^{top}(\omega^2,k) \leq \omega^{\omega}$. • $R^{top}(\omega^n+1,k+2) \leq \omega^{\omega^k \cdot n} + 1$ for every positive integer n. $\blacksquare \ R^{top}(\omega^{\omega^lpha},k+1) \leq \omega^{\omega^{lpha\cdot k}}.$

the Erdős–Milner theorem of [4].

References

- [1] Andrés E Caicedo and Jacob Hilton. Topological Ramsey numbers and countable ordinals. arXiv preprint arXiv:1510.00078, 2015.
- [2] Jacob Hilton. The topological pigeonhole principle for ordinals. The Journal of Symbolic Logic, to appear. arXiv preprint arXiv:1410.2520, 2014.
- [3] James E Baumgartner. Partition relations for countable topological spaces. Journal of Combinatorial Theory, Series A, 43(2):178–195, 1986.
- Paul Erdős and Eric C Milner. A theorem in the partition calculus. Canadian Mathematical Bulletin, 15(4):501, 1972.
- William Weiss. Partitioning topological spaces. In Mathematics of 151 Ramsey theory, pages 154–171. Springer, 1990.

- **Definition.** Let α and β be ordinals. The *topological ordinal Ramsey* number $R^{top}(\alpha,\beta)$ is the least ordinal γ (if one exists) such that
- Since $\omega^2 \not\to_{top} (\omega + 1, 3)^2$ (exercise), it follows from our example that
- If γ is a countable ordinal, then using two orderings and a Sierpińkski "same-different" colouring, one can show that $\gamma
 earrow_{top} (\omega + 1, \omega)^2$. Hence if $R^{top}(\alpha,\beta)$ is countable and $\alpha > \omega$, then β must be finite.
- We therefore studied $R^{top}(\alpha,k)$ with α countable and k finite. Building on work from [2] and [3], we proved these results in [1].
- **Theorem** (Caicedo–Hilton, 2015). Let α be a countable ordinal and let

In particular, $R^{top}(lpha,k)$ is indeed countable whenever lpha is countable and k is finite, by the last of these results. This is a topological version of